Mathematics

Transfer

AS Degree in Mathematics

AS-T Degree in Mathematics

Mathematics Program
Counseling and Advising: (530) 895-2378
Transfer Counseling Center: (530) 895-2264
Transfer Information: www.assist.org
Department Office: TE 132, (530) 895-2451
Juliet Hauser, Chair (530) 879-4300

About the Program

The transfer major listed here partially reflects requirements for CSU, Chico. Students planning to transfer should contact a counselor for more information on program and transfer requirements.

AS-T Degree in Mathematics

The Associate in Science in Mathematics for Transfer degree (AS-T in Mathematics) is intended for students who plan to complete a bachelor's degree in Mathematics at a CSU campus. Students completing this degree are guaranteed admission to the CSU system, but not to a particular campus or major. Students transferring to a CSU campus that does accept this degree will be required to complete no more than 60 units after transfer to earn a bachelor's degree. This degree may not be the best option for students intending to transfer to a particular CSU campus or to a university or college that is not part of the CSU system. In all cases, students should consult with a counselor for more information on university admission and transfer requirements.

The associate transfer degrees (AA-T or AS-T) require completion and certification of the California State University General Education (CSU GE) or the Intersegmental General Education Transfer Curriculum (IGETC) as well as the specific AA-T or AS-T major degree requirements. Students earning either an AA-T or an AS-T will not be held to additional Butte College graduation requirements (including Physical Education and the multicultural competency). Students should work with a counselor to identify major coursework that can be used to fulfill CSU GE or IGETC categories.

To obtain an Associate's degree, students must complete both the major requirements and the graduation requirements listed in this catalog.

Note that some courses have a prerequisite (P), corequisite (C), or both (P/C). Prerequisites and corequisites are listed within each course description in this catalog.

Transfer majors designated as AA-T or AS-T are designed for transfer to a similar major at an unspecified CSU. Transfer majors designated as AA or AS are designed for transfer to the corresponding major at a specific CSU and are based on articulation. See a counselor for more information. Read about the difference between these types of degrees at the beginning of the Transfer section of this catalog.

AS Degree in Mathematics

Student Learning Outcomes

Upon successful completion of this program, the student will be able to:

- Define, understand, and apply concepts of limits, differentiation, and integration to authentic problems.
- Apply methods of matrix transformations to solve both practical and theoretical problems.
- Determine whether a theorem or definition applies in a given situation and use it appropriately.
- Demonstrate good problem-solving habits including estimating solutions and rejecting unreasonable results.
- Demonstrate the ability to use symbolic, graphical, numerical, and written representations of mathematical ideas.

Required courses for the major:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 30</td>
<td>Analytic Geometry and Calculus I</td>
<td>P</td>
</tr>
<tr>
<td>MATH 31</td>
<td>Analytic Geometry and Calculus II</td>
<td>P</td>
</tr>
<tr>
<td>MATH 32</td>
<td>Analytic Geometry and Calculus III</td>
<td>P</td>
</tr>
<tr>
<td>MATH 40</td>
<td>Differential Equations</td>
<td>P</td>
</tr>
<tr>
<td>MATH 42</td>
<td>Linear Algebra</td>
<td>P</td>
</tr>
<tr>
<td>CSCI 20</td>
<td>Programming and Algorithms I</td>
<td></td>
</tr>
</tbody>
</table>

AS-T Degree in Mathematics

Student Learning Outcomes

Upon successful completion of this program, the student will be able to:

- Define, understand, and apply concepts of limits, differentiation, and integration to authentic problems.
- Apply methods of matrix transformations to solve both practical and theoretical problems.
- Determine whether a theorem or definition applies in a given situation and use it appropriately.
- Demonstrate good problem-solving habits including estimating solutions and rejecting unreasonable results.
- Demonstrate the ability to use symbolic, graphical, numerical, and written representations of mathematical ideas.

Required courses for the major:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 30</td>
<td>Analytic Geometry and Calculus I</td>
<td>P</td>
</tr>
<tr>
<td>MATH 31</td>
<td>Analytic Geometry and Calculus II</td>
<td>P</td>
</tr>
<tr>
<td>MATH 32</td>
<td>Analytic Geometry and Calculus III</td>
<td>P</td>
</tr>
<tr>
<td>MATH 40</td>
<td>Differential Equations</td>
<td>P</td>
</tr>
<tr>
<td>MATH 42</td>
<td>Linear Algebra</td>
<td>P</td>
</tr>
<tr>
<td>CSCI 20</td>
<td>Programming and Algorithms I</td>
<td></td>
</tr>
</tbody>
</table>

List A: Select one to two

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 40</td>
<td>Differential Equations</td>
<td>P</td>
</tr>
<tr>
<td>MATH 42</td>
<td>Linear Algebra</td>
<td>P</td>
</tr>
</tbody>
</table>

List B: Select one

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 41</td>
<td>Physics for Scientists and Engineers I</td>
<td>P/C</td>
</tr>
<tr>
<td>CSCI 20</td>
<td>Programming and Algorithms I</td>
<td></td>
</tr>
<tr>
<td>MATH 18</td>
<td>Introduction to Statistics</td>
<td>P</td>
</tr>
</tbody>
</table>

List B: Select one

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 41</td>
<td>Physics for Scientists and Engineers I</td>
<td>P/C</td>
</tr>
<tr>
<td>CSCI 20</td>
<td>Programming and Algorithms I</td>
<td></td>
</tr>
<tr>
<td>MATH 18</td>
<td>Introduction to Statistics</td>
<td>P</td>
</tr>
</tbody>
</table>